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Abstract. We have computed geometrical characteristics of large clusters (up to 32 768
particles) obtained by a hierarchical cluster–cluster aggregation computer model in three
dimensions,the off-lattice variable-D model. Using a ‘box-counting’ method, we have calculated
the fractal dimensions of the surfaceDs and the perimeterDp of their two-dimensional
projections as a function of their fractal dimensionD. By diagonalizing the radius of gyration
tensor, we have obtained numerical estimates for the intrinsic anisotropy coefficients (ratios of
the eigenvalues) and we have proposed analytical expressions to describe their behaviour as a
function of the fractal dimension.

1. Introduction

A great number of condensed-matter systems from polymer solutions and colloidal
suspensions to smoke and dust, exhibit scale invariance over a large range of lengths.
The description of the morphology of such structures by means of fractal geometry [1]
has led to a better understanding of the aggregation mechanisms by which they are formed
[2, 3] and of their resulting physical and chemical properties [3]. In this paper we are
interested by two geometrical problems of great practical importance. The first one is
the relation between the characteristics of the two-dimensional projection of a fractal
aggregate and its three-dimensional fractal properties. This problem arises, for example,
when trying to extract information on a three-dimensional fractal structure from a two-
dimensional micrograph, a problem with which many experimentalists were faced. The
second concerns the intrinsic anisotropy of a fractal aggregate. While it has been previously
shown that the anisotropy is of fundamental importance in fractal aggregated structures
[7], such geometrical characteristics, except in some case [8], has seldom been used by
experimentalists in connection with fractal properties. In both cases there have been previous
theoretical contributions in the literature but they were often confined to particular growth
processes. Anisotropy properties of clusters of particles have been studied in some models:
random walks [4–6], self-avoiding walks [9], and lattice animals and percolation [7, 10–12].

In this paper we address these two problems numerically with fractal aggregates
which have been built on a computer using a newly developed off-lattice hierarchical
model with a tunable fractal dimension [14]. This quite general model can be considered
as an extension of the existing cluster–cluster aggregation models with different cluster
trajectories [2, 3] since the cluster penetration is here chosen to obtain the desired fractal
dimension. In section 2 we present a numerical study of the fractal characteristics of the
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two-dimensional projections. In particular we calculate the fractal dimension of both the
bulk and the perimeter of the projection as a function of the fractal dimension of the three-
dimensional cluster. In section 3 we present a numerical study of some intrinsic anisotropy
characteristics of the clusters. After diagonalizing the radius of gyration tensor, we calculate
the anisotropy coefficients which are the ratios between the successive eigenvalues. Based
on an approximate expansion in(D − 1), we propose an analytical expressions for the
dependence of these coefficients with the fractal dimension. In section 4 we discuss these
results and conclude.

2. Numerical study of the aggregate projections

2.1. Principles

We have previously published results about the calculations of ‘effective’ fractal dimensions
for the surfaceDs and the perimeterDp of the two-dimensional projections of fractal
aggregates obtained by the on-lattice version of the variable-D model [15]. But, since we
have developed an off-lattice version of this model which is able to build more realistic
fractal aggregates [14], we have judged it useful to reproduce such a calculation using this
new version. Moreover, instead of calculating ‘effective’ fractal dimensions (which were
obtained by comparing aggregates of successive sizes) here we have calculated the fractal
dimensions using a more standard ‘box-counting’ method, close to the numerical methods
used by experimentalists to analyse their micrographs.

For each aggregate, we have stored its projections on planes perpendicular to thex,
y, and z directions of the three-dimensional space. As the aggregates are made of hard
spheres of diameter 1, some of which are on contact, their projections are made of circles,
some of which are overlapping. On the projection plane we have defined a square grid
with mesh`, where` is the edge length of an individual square or ‘pixel’. Then we have
defined the ‘occupied’ pixels as being located either on the perimeter or inside the surface
of the aggregate. Such occupied pixels are lying completely inside the circular projection
of a particle (for small̀ ) or are such that at least one of their edges is cut by at least one
circle. Then, among all the occupied pixels, we have counted the numbersNs andNp of
pixels respectively located inside the surface and on the perimeter of the projection, a pixel
inside the surface being such that all its nearest neighbours are occupied.

The procedure has been performed with different` values, we have recovered the scaling
relations

Np ∼ `−Dp

Ns ∼ `−Ds.
(1)

We have found that such scaling holds between`min ' 1.5 and`max' 0.07N1/D where
perfect straight lines are found in a log–log plot.

2.2. Results and discussion

We have performed several runs on samples up toN = 32 768 particles, with a tunable
fractal dimension ranging from 1.1 to 2.5. For each run, we have taken 40 different values
of ` which allowed us to fit the log–log curves using standard linear regression methods.
We have averaged all the calculations over 16 samples for clusters of sizeN = 8192 (open
symbols), and over four samples for clusters of sizeN = 32 768 (full symbols), and for
each one, over the three-projection axis.
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Figure 1. Numerical results for the fractal dimensionsDs (square),Dp (circle) andDs/Dp

(triangle) as a function ofD, for N = 8192 (open symbols) andN = 32 768 (full symbols).
Dotted and broken curves indicated the conjectures forDp andDs/Dp (equations (2) and (3)).

All the estimated slopesDp, Ds andDs/Dp are reported in figure 1. On the same figure
we have indicated by broken and dotted curves the conjectures made in our previous work
[15], for 2< D < 3:

Dp = 1+ (3−D) 3
2 (2)

Ds

Dp
= 2

1+ (3−D) 3
2

. (3)

We recall that, in [15], this conjecture was obtained by extrapolating to infinite size an
effective fractal dimension which was defined in order to attenuate finite-size corrections
[18]. Here, when using the box-counting method, it turns out that the finite-size effects
are considerably larger since one observes on figure 1 that, even for such a large value as
N = 32 768, the curves for bothDs andDp stay far from their asymptotic and/or estimated
values. Note that the finite size effects are larger in the vicinity ofD = 2 and larger forDp

than forDs. Finite-size effects are even present for smallD (close to one) where we could
have expected to recoverDs = Dp = D with a good accuracy.

3. Intrinsic anisotropy of clusters

3.1. Method

Here we follow the numerical procedure first introduced by Hentschel [16]. We write the
radius of gyration tensorR2

i,j [7] for a given cluster withN particles, as:

R2
i,j =

1

N

N∑
n=1

(xni − x0
i )(x

n
j − x0

j ) (4)
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wherexni denoted theith coordinate (16 i 6 3) of the nth particle andx0
i denoted the

ith coordinate of the mass centre. The eigenvalues obtained by diagonalizing this tensor
define the principal radii of gyrationR2

i (i now labels the eigenvalues). We put them in the
following conventional order:

R2
1 > R2

2 > R2
3. (5)

Taking into account the invariance of the trace of the tensorR2
i,j , we have

3∑
i=1

R2
i =

3∑
i=1

R2
i,i = R2 (6)

whereR is the usual radius of gyration which verifies the scaling relation:

R2 ∼ N2/D. (7)

Assuming constant anisotropy ratios between the eigenvalues, the scaling relation is also
verified by eachRi . Using the hierarchical procedure of the variable-D model [13], we have
built, in three dimensions, aggregates of 32 768 particles, with fractal dimensions ranging
from 1.1 to 2.5. The eigenvaluesR2

1, R2
2 and R2

3 have been averaged over the whole
collection of clusters of 2k particles at several stepk of the iterative procedure (typically,
we choosek = 8–11, to get a good average). To characterize the anisotropy, we have
calculated the ratios:

A1 = 〈R
2
1〉
〈R2

3〉
(8)

A2 = 〈R
2
2〉
〈R2

3〉
(9)

where〈. . .〉 denotes the average over all the collection of clusters. In addition, we have also
calculated the anisotropy ratioA′1, defined as in equation (8), for random two-dimensional
projections of the three-dimensional fractal clusters. Botetet al [17] have previously studied
the anisotropy ratio, for three different cluster–cluster aggregation processes (in two, three
and four dimensions). The present work extends these results for clusters with tunable
fractal dimensions, and propose some extrapolation for the behaviour ofA1, A2 andA′1 as
a function of the fractal dimension.

3.2. Results

A first qualitative estimate of the effect of the fractal dimension on the anisotropy can clearly
be seen by looking at the two-dimensional projections of the three-dimensional aggregates
depicted in our previous papers [13, 14]. To be more quantitative here, we have reported,
in the log–log plot of figure 2, the values obtained forA1 (circles) andA2 (squares) as
a function of(D − 1), for two cluster sizesN = 1024 and 2048 (open and full symbols
respectively), averaged over 128 and 64 clusters (respectively). For comparison, we have
indicated the results found by Botetet al [17] for three-dimensional aggregates in the case
of linear trajectories:A1 = 10.0± 0.3 andA2 = 2.5± 0.3 (full triangles), for a fractal
dimensionD = 1.98. They are in a good agreement with our results. Indeed we find
a strong dependence of the anisotropy with the fractal dimension. WhenD → 1, A1

increases dramatically whileA2 turns out to saturate to a finite value, of about 7. Note that
the dependence of the numerical results with the size is very small, therefore the values
reported for the anisotropy ratios can be estimated to be very close to their asymptotic
large-N limit.
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Figure 2. Log–log plot ofA1 (circle) andA2 (square) as a function of(D − 1), the data have
been averaged over 128 and 64 clusters forN = 1024 (open symbols) and 2048 (full symbols),
respectively. Full triangles are the values ofA1 andA2 are taken from [17].

Figure 3. Log–log plot of the ratioA1/A2 as a function of(D−1) for N = 1024 (open circles)
and 2048 (full circles). The data have been averaged over 128 and 64 clusters, respectively.
The full curve and the broken straight line correspond to equations (19) and (20), respectively.
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In figure 3, we have reported the ratioA1/A2 as a function of(D−1) in a log–log plot,
for N = 1024 and 2048 (open and full circles respectively). This plot reveals a quasilinear
dependence which can be expressed as:

A1

A2
' 3

D − 1
. (10)

Note that this approximate relation cannot be valid up toD = 3 since one should get
A1/A2 = 1 (point indicated by a full circle in figure 3) in this spherically isotropic
limit. However, we recall that our model could not go beyond an upper fractal dimension,
estimated to beDM = 2.55 for d = 3, and this is the reason why we have not reported any
data above this limit.

Finally, we have used the algorithms of section 2 and 3, to calculate the radii tensor
of the three projections of aggregates, and, by diagonalizing this tensor, we have obtained
their principal radii of gyration which allowed us to calculateA′1, the anisotropy ratio for
a two-dimensional projection of a three-dimensional cluster. The determination ofA′1 was
the same as the method employed forA1 and A2 calculations, but for each projection,
we have taken into account all the centres of squares, with edge length` = 2, used to
encompass the aggregate projection. For each aggregate projection, we performed first
the dressing determination, and then, the calculation ofA′1. An average over the three
projections has been done at the end of the procedure. Typically, we have averaged the
results over 32 samples forN = 1024 particles, and over 16 samples forN = 2048 particles
(taking into account the three projections, we have done in fact an average over 96 and
48 samples respectively). We have plotted our results on figure 4, versus(D − 1), in log–
log scale. We added previous results for other cluster–cluster models, namelyA′1 ' 4.4
and 4.0 respectively for Brownian (full square) and linear trajectories (full diamond and
triangle). These results are extracted from [17] and the note added therein. There is a good
agreement with our results. Another remark is that the behaviour ofA′1 looks similar to
that ofA1/A2, suggesting also a divergence proportional to 1/(D − 1) asD→ 1 but with
a larger coefficient:

A′1 '
5

D − 1
. (11)

In the next section we will try to understand theD behaviour of all these anisotropy
coefficients by performing some approximate calculations valid in the strong anisotropic
limit D→ 1.

3.3. Discussion

We recall that the variable-D model is an iterative cluster–cluster aggregation procedure.
This procedure builds fractal clusters of 2N particles by randomly joining two clusters of
N particles. It also satisfies the constraint that the distance0 between the centres of mass
G1 andG2 stays proportional to the mean quadratic radius of gyrationR (i.e. R2 is the
mean squared radius of the two clusters):

0 = kR (12)

wherek is a function of the input fractal dimension:

k = 2
√

41/D − 1. (13)

Knowing that the radius of gyrationR′ of the new cluster of 2N particles is given by [18]:

R′2 = R2+ 02/4 (14)
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Figure 4. Log–log plot ofA′1 as a function of(D − 1) for N = 1024 (open circles) and 2048
(full circles). The data have been averaged over 128 and 64 clusters, respectively. We have
added results taken from [17] for the cluster–cluster aggregation model with Brownian (full
square) trajectories and with linear trajectories (full diamond and triangle).

it can be checked that the sticking rule is consistent with the scaling relation:

R′ = 21/DR. (15)

Note that here we have dropped some finite-size corrections which were present in the
original model (in order to haveR = 0 for N = 1) [15] but which become irrelevant for
largeN values.

In the strong anisotropy limitD→ 1, one hask→√12 andR′1→ 2R1 whileR2� R1

andR3 � R1. In that limit the sticking pointI is located near the tips of the two clusters
almost on their principal axis (corresponding to their larger radius of gyration) and the
principal axis of the two clusters make infinitesimal anglesθ1 andθ2 (see figure 5, left) with
the principal axis (1’) of the new cluster which is almost in the directionG1G2. Assuming
(consistently with the scaling hypothesis) a strict proportionality between maximum radii
and gyration radii and considering a sticking pointI located right on the tips, projecting on
(1’) and taking the average of the principal radius of gyration squared over theθ1 and θ2

orientations, one obtains:

R′21 ' 4R2
1〈cos2 θ〉. (16)

Comparing with the scaling relation which should hold for the three eigenvalues, one obtains:

〈cos2 θ〉 ' 41/D

4
(17)

which is indeed an approximate estimation of the mean disorientation only valid in the limit
D→ 1, θ → 0.

We will now assume that the second eigenaxis (2’) of the new cluster (corresponding
to the second eigenvalueR′2), perpendicular to (1’), is almost in the planeG1G2I , due to
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Figure 5. Sketch of the sticking of two aggregates ofN particles to give a larger aggregate of
2N particles in the limitD → 1. The aggregates are represented by ellipsoids. The principal
axis of the resulting aggregate are (1’) (2’) (3’).G1, G2 andG’ denote the centres of mass and
I the contact point. Left and right correspond to projections in the plane (1’) (2’) and (2’) (3’),
respectively.

the small disorientation. Then, neglecting the intrinsic lateral extensions of the two clusters
and projecting on (2’) in a similar way to above, one obtains:

R′22 ' R2
1〈sin2 θ〉. (18)

Using the scaling relation forR2 and the result for〈cos2 θ〉, one obtains:

A1

A2
= 1

4−1/D − 1
4

. (19)

This relation is indicated by the full curve in figure 3. In view of the crude reasoning, the
agreement with the numerical data turns out to be very good. As expected the agreement
is better for values ofD close to 1. When expanding this relation in terms of(D− 1), one
obtains:

A1

A2
= 2/ ln 2

D − 1
' 2.88

D − 1
(20)

to be compared with equation (10). This expansion is reported as the broken straight line in
figure 3. The better agreement with the numerical data should be considered as fortuitous as
the numerical values should deviate below the previous curve to getA1/A2 = 1 for D = 3.

To estimateR′3, one should now consider a projection onto a plane perpendicular to (1’)
(see figure 5, right). We recall that, in this plane, the direction of (2’) is almost determined
by the projection of the planeG1G2I . We will assume that the principal axis of the two
cluster projections are the second axis of the three-dimensional clusters and make angles
φ1 and φ2 with (2’). Note that, although they should be both smaller thanπ/2 (due to
the small disorientation mentioned above), these two angles cannot be considered as very
small. We will even assume that, in the limitD → 1 whereθ1 and θ2 vanish,φ1 andφ2

become uniformly random. Projecting on the direction (3’) (which is perpendicular to (1’)
and (2’)) and averaging in the same way as above, one obtains:

R′23 = R2
2〈sin2 φ〉 + R2

3〈cos2 φ〉. (21)

Then using the scaling relation forR3 and assuming〈sin2 φ〉 = 〈cos2 φ〉 = 1
2, one obtains:

A2 = 2.41/D − 1. (22)
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Figure 6. Log–log plot of (7− A2) as a function of(D − 1) for N = 1024 (open circles) and
2048 particles (full circles). The data have been averaged over 128 and 64 clusters respectively.
The full curve and the broken straight line correspond to equations (22) and (23), respectively.

It is remarkable to obtainA2 → 7 whenD → 1 as observed in the numerical results. In
figure 6, we compare the numerical data forA2 with this theoretical formula as well as with
the (D − 1) expansion

A2 = 7− 8(D − 1) ln 4. (23)

Here again the agreement is quite good.
At last, in the same spirit, we can give an approximate relationship between the

anisotropy coefficient of the two-dimensional random projectionA′1 and those of the three-
dimensional clusters. Assuming that, in the strong anisotropic limit, the principal axis
of the projection is the projection of the principal axis of the three-dimensional cluster
which makes a random angleψ with the projection plane, the largest eigenvalue of the
projection isR2

1〈cos2ψ〉 = R2
1/2, i.e. half of one of the three-dimensional clusters. With

the same reasoning, since the projection angles of the other axis are also random, the second
eigenvalue is half of the average ofR2

2 andR2
3. This gives:

A′1 =
2A1

1+ A2
. (24)

Using the results forA1/A2 andA2, A′1 should diverge as:

A′1 =
7/(2 ln 2)

D − 1
' 5.04

D − 1
. (25)

This expansion, which is very close to formula (11), corresponds to the broken straight line
shown in figure 4.
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4. Conclusion

In this paper, we have calculated some geometrical characteristics of fractal aggregates
built with the off-lattice variable-D model, namely the fractal dimensions of the surface
and perimeter of two-dimensional projections and the intrinsic anisotropy ratios of both
the aggregates themselves and their projections. We have studied how these characteristics
vary as a function of the fractal dimension of the clusters and have been able to give
approximate analytical expressions in some cases. Concerning the fractal characteristics of
the two-dimensional projections, we have found that they were subject of strong finite-size
corrections and therefore the experimental study of these quantities alone in specific cases
might not be so useful to extract precise information on the fractal dimension. We have
seen that, even for fractal dimensions smaller than two, the fractal dimension cannot be
estimated from the fractal characteristics of two-dimensional projections, calculated with
the box-counting method, in contrast with what is commonly admitted. On the other
hand, the anisotropy parameters seem to be quite insensitive to size and they strongly
depend on the fractal dimension. In particular we have found that the anisotropy ratio
of a random two-dimensional projection decreases when increasing the fractal dimension,
roughly proportionally to the inverse of(D − 1). Since the experimental determination of
such a parameter can be very easy in many cases, it can provide a simple indirect way
to estimate the variation of the fractal dimension of cluster aggregates. However, when
trying to more quantitatively apply our results to any experimental situation, it should be
remembered that they are not universal, in the sense that they have been calculated for a
particular cluster–cluster model in which cluster polydispersity has been neglected. This lack
of universality was previously mentioned in our earlier paper [15] when we were introducing
the conjectured formulae (2) and (3) for the dependence of the fractal dimensions of surface
and perimeter of a projection on the bulk fractal dimension. However, it has been pointed out
to us that, surprisingly, these formulae work nicely for percolation clusters [19] which have
obviously nothing to do with the variable-D model. Anyway, before applying our results to
any experimental situation, it would be worth having some evidence that the growth process
of the observed aggregates is of cluster–cluster type and that cluster polydispersity can be
neglected.
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